pennylane_aqt.ops.R

class R(wires)[source]

Bases: pennylane.operation.Operation

Two-parameter rotation gate.

\[\begin{split}R(t,p) = \begin{bmatrix} \cos(t\tfrac{\pi}{2}) & -i e^{-ip\pi}\sin(t\tfrac{\pi}{2}) \\ -i e^{ip\pi}\sin(t\tfrac{\pi}{2}) & \cos(t\tfrac{\pi}{2}) \end{bmatrix}\end{split}\]

For further details, see the AQT API docs.

Details:

  • Number of wires: 1
  • Number of parameters: 1
Parameters:wires (int) – the subsystem the gate acts on
base_name Get base name of the operator.
do_check_domain
eigvals Eigenvalues of an instantiated operator.
generator Generator of the operation.
grad_method
grad_recipe
inverse Boolean determining if the inverse of the operation was requested.
matrix Matrix representation of an instantiated operator in the computational basis.
name Get and set the name of the operator.
num_params
num_wires
par_domain
parameters Current parameter values.
string_for_inverse
wires Wire values.
base_name

Get base name of the operator.

do_check_domain = True
eigvals

Eigenvalues of an instantiated operator.

Note that the eigenvalues are not guaranteed to be in any particular order.

Example:

>>> U = qml.RZ(0.5, wires=1)
>>> U.eigvals
>>> array([0.96891242-0.24740396j, 0.96891242+0.24740396j])
Returns:eigvals representation
Return type:array
generator

Generator of the operation.

A length-2 list [generator, scaling_factor], where

  • generator is an existing PennyLane operation class or \(2\times 2\) Hermitian array that acts as the generator of the current operation
  • scaling_factor represents a scaling factor applied to the generator operation

For example, if \(U(\theta)=e^{i0.7\theta \sigma_x}\), then \(\sigma_x\), with scaling factor \(s\), is the generator of operator \(U(\theta)\):

generator = [PauliX, 0.7]

Default is [None, 1], indicating the operation has no generator.

grad_method = 'A'
grad_recipe = None
inverse

Boolean determining if the inverse of the operation was requested.

matrix

Matrix representation of an instantiated operator in the computational basis.

Example:

>>> U = qml.RY(0.5, wires=1)
>>> U.matrix
>>> array([[ 0.96891242+0.j, -0.24740396+0.j],
           [ 0.24740396+0.j,  0.96891242+0.j]])
Returns:matrix representation
Return type:array
name

Get and set the name of the operator.

num_params = 2
num_wires = 1
par_domain = 'R'
parameters

Current parameter values.

Fixed parameters are returned as is, free parameters represented by Variable instances are replaced by their current numerical value.

Returns:parameter values
Return type:list[Any]
string_for_inverse = '.inv'
wires

Wire values.

Returns:wire values
Return type:tuple[int]
check_domain(p[, flattened]) Check the validity of a parameter.
decomposition(*params, wires) Returns a template decomposing the operation into other quantum operations.
get_parameter_shift(idx) Multiplier and shift for the given parameter, based on its gradient recipe.
inv() Inverts the operation, such that the inverse will be used for the computations by the specific device.
queue() Append the operator to the Operator queue.
check_domain(p, flattened=False)

Check the validity of a parameter.

Variable instances can represent any real scalars (but not arrays).

Parameters:
  • p (Number, array, Variable) – parameter to check
  • flattened (bool) – True means p is an element of a flattened parameter sequence (affects the handling of ‘A’ parameters)
Raises:
  • TypeError – parameter is not an element of the expected domain
  • ValueError – parameter is an element of an unknown domain
Returns:

p

Return type:

Number, array, Variable

static decomposition(*params, wires)

Returns a template decomposing the operation into other quantum operations.

get_parameter_shift(idx)

Multiplier and shift for the given parameter, based on its gradient recipe.

Parameters:idx (int) – parameter index
Returns:multiplier, shift
Return type:float, float
inv()

Inverts the operation, such that the inverse will be used for the computations by the specific device.

This method concatenates a string to the name of the operation, to indicate that the inverse will be used for computations.

Any subsequent call of this method will toggle between the original operation and the inverse of the operation.

Returns:operation to be inverted
Return type:Operator
queue()

Append the operator to the Operator queue.